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BENDING OF A SIMPLY SUPPORTED CIRCULAR
CYLINDRICAL SHELL SUBJECTED TO UNIFORM LINE
LOAD ALONG A GENERATOR

A. K. NAGHDI
Purdue University, Indianapolis, Indiana 46205

Abstract—The complex differential equation of cylindrical shells, given by Novozhilov [1], is used to obtain the
state of stress for a simply supported closed thin circular cylindrical shell acted upon by a uniform inward radial
line load along a generator. The problem is solved by obtaining a closed form particular integral of the differential
equation, and satisfying the edge conditions with the aid of complementary solutions in the form of a single
Fourier series which converges very rapidly for the region near the middle of the shell. For comparatively long
shells an approximate expression, in closed form, is derived for the region far away from the edges. A mathematical
proof of the convergence of the series is given, and numerical results for several ratios of length to radius are
presented.

1. INTRODUCTION

DURING the past twenty years, several authors have investigated the problem of bending
of a circular cylindrical shell, with finite length, under the action of a discontinuous surface
load. Odqvist [2], Hoff et al. [3] and Cooper [4] have analysed the problem of a simply
supported circular cylindrical shell subjected to a radial line load along a generator. They
employed the same method of approach, but different theories of cylindrical shells, to
obtain an approximate solution in the form of a single Fourier series for any type of local
loadings of the shell. Meanwhile Bijlaard [5] investigated a similar problem by representing
the solution in the form of double Fourier series. Subsequently Meck [6] solved the problem
of bending of a circular cylindrical shell under a varying circumferential line load by
reducing the standard eight order differential equation to two fourth-order equations.
Nash and Bridgland [7] also have investigated the problem of local loading of a circular
cylindrical shell by employing finite Fourier transform technique. However, in all the above
works the primary difficulty is slow convergence of the series, especially near the points
where the stresses are critical. This is obviously due to the fact that the function representing
the discontinuous load, is expanded into infinite series.

However, in the present investigation, a closed form particular integral for the dis-
continuous load is found, and hence the series representing the homogeneous solution
converges rapidly. It should also be mentioned here that the governing equations used by
the previous authors are either unsuitable, or too complicated for the present problem
compared to the method employed in this investigation. For example, Donnell’s equation
used in [3] is unsuitable for closed cylindrical shells, and Fliigge’s equation used in {5-7]
leads to cumbersome and lengthy expressions if the present technique is employed.
Novozhilov’s theory of thin cylindrical shells, on the other hand, incorporates various
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theories of cylindrical shells into one complex equation, which can be used for closed or
open shells of any length [1], and yet it is not too complicated for the method of solution
employed in the present work.

2. FORMULATION

The complex differential equation of cylindrical shells, given by Novozhilov [1], is
in the form

~ a~

. 0°T 2T
AAT +— +2b%i
+802 +2b 1(762

= 2b*RiAp, (1

where T is the complex potential, R is the radius of the middie surface, and p is the radial
external load per unit area of the middle syrface taken positive outward. Other quantities
and symbols in equation (1) are defined by:
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Here t is the thickness of the shell, v is Poisson’s ratio, and x and y are respectively the
actual distances on the middle surface measured along axial and circumferential directions.

The resultant forces T, Ty, Ty, Ty, resultant moments M, My, M .o, M. and transverse
shears N, N, are obtained from the following relations [1]

= 1 200
§= S+i%, (3)
VIR

where
M
S = Téo—_Ri’*’ = T,
4)
H=x M. =~ My,,



Bending of a simply supported circular cylindrical shell 1069

and T, T;, and § are related to the complex potential as follows [1]
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The positive directions of the above resultant forces and moments are the same as those
given in [1].

The displacements u, v, and w of the middle surface respectively along the ¢, 0, and z
directions, where z is the axis normal to the middle surface taken positive outward, are
related to the resultant forces and moments as follows [1]
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Here E is the modulus of elasticity.
If the origin is chosen at the middle of the cylinder, one must have, for a simply supported
shell, the following edge conditions [1]

v=w=T.=M,=0 at £ = +{/R, (7)

where [ is half the length of the cylindrical shell. These conditions imply, considering the
second and the fourth of equations (6), that T, = Ty = M, = M, = 0 at the supports.
Therefore, from (3) and (5), we have

T=T,=0 até=+l/R 8)

Hence apart from rigid body displacements which do not affect the stresses, the conditions
in (8) are equivalent to those of (7).

3. SOLUTION

Let us assume that a simply supported circular cylindrical shell is acted upon, along a
generator, by a uniform inward radial line load of intensity p per unit length of the shell.
Choosing the origin at the middle of the shell, and along this line load, one could represent
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the normal pressure p in the form
_ _Psoy =2l _so+) _P _
p= Ré(()) = R[ 5(0)+ncos 0} "R cos 4, n>0> —m, 9)

where (6) is the unit impulse function.

The terms in the bracket in the right-hand side of (9) correspond to a self equilibrated
loading which does not cause any total bending of the shell in the plane of the line load,
while the effect of the last term is the bending of the shell similar to that of a beam. Substitut-
ing (9) in (1) we obtain

2é? P 467

The general solution of (10) is sought in the form

o*T o*T 2 1 b%p
AT +— pYs: +21b2 = 2ib%p d [ 5(9)+; cos 9] +2i~nl—)cos 0. (10)

T = Y(0)+ F(&)cos 6+ Z OmlE) cos mb, (11)

m=

in which the series on the right-hand side represents the complementary solutions of (10).
Y(0) and F(&) are, respectively, particular integrals of

d*y g 1
K123 +y = 2ib p[—5(9)+;cos 0], (12)
d? [d?F b2p

d—éz[d—62~2(1—ib2)F} - 2i—n’3. (13)

In order to find a particular integral of (12), we proceed with the known method of
variation of parameters [§] to get

Y(0) = 2ib*p {— cos Of [ 0)+ cos 0:| sin 8 df+ sin BJ l: 5(0)+ cos 0:' cos 0 dﬂ}

(14)

Taking now into consideration that y must be an even function of 8, we arrange the const-
ants of integration so that:

j&(@) dg = U(0), J U(9)dé = K(0), (15)
where
U(8) = 1&(0), K(0) = 30¢(0),
+ for 8 > 0,
#40) = {— for 6 < 0.

Using (15), the right-hand side of (14) is evaluated by integration by parts. After a few
simplifications, we find
2 ib*p .
Y(0) = —e(@)b?pi sin 0+2—n(cos 0+ 20 sin 0), n=20=—-m (16)
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It is seen that s is a continuous function of 6, as it should be, in the region prescribed.

Physically ¥ is the solution for an infinitely long shell in which the stresses do not depend

on ¢ as the result of the action of a uniform line load equilibrated by a distributed sinusoidal
load.

A particular integral of (13) is obtained in the usual way, and hence one has
b%ip
F(f)= —— 2 17
© =~ ¢ (17

In order to find the complementary solution of (10), we substitute the general term of
the series ¢,(&) cos mf into the homogeneous equation (10) to get

d*¢,, d*¢,,
det de

+(2ib% —2m?) +(m*-m*¢, =0, m=012.... (18)

The solution of (18), considering that ¢,, must be an even function of £, is obtained in the
usual way. Therefore we have

¢0 = Ag+C0 COSh aoé’
¢, =A;+C,cosho &, | {19)
¢, = A, cosh B,&+ C,, cosh a,&,

in which

oy = b(1—1i),
oy = [2(1-ib?)],
oy = {3m® +7)+3[(m* +7)° + A+ 01 ~ i —30m> +9) + 3Hm* +9) + (4 + 6711,
m=22734,...
Bw = {3m* —y)+3[m* — 9 + (A= b*PT}* +i{ = Hm® — ) +3{(m* — 9 + (A~ B TH,
y = {30m® = b*)+3{(m* —b*) + 4m*b* ]},
A = {—3m?=b*+3[(m* — b*)* + 4m*b*]}}1,
In equation (19), 4,4, Co, 4, Cy, A, and C,, are unknown complex constants to be

determined from the edge conditions at ¢ = +//R.
We now substitute (16), (17) and (19) into (11) to obtain

21 2= . 2_
= _ P ib*p o ib'p o,
T = —&B)b?*pisin 8+—2n {cos 8+ 28 sin 6) M——-zn(l—ibz)é cos B

+As+Cocoshagé+(A,+C; cosha;E)cos b

+ Y (AncoshB,&+C,cosha,l)cosmb, =7 >02—m (20)

m=2
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Having determined the complex potential T one could find all the resultant forces and

resultant moments from relations (5}, (3) and (4). For the sake of brevity, we shall give only
the expressions for T, and T.

~

T, = —e@)p(b?i—1)sin 6+2 (cos 8+ 26 sin B)(ib* ~ 1)+ A4,

‘ bpic?-2)] P
+{ szl: Ay +(a1—l)C,cosha1g+-~..&._*- +;+AI

17!

bz—- oo
+C, cosh oe,i~&—$§“2}cos o0+ Y {C,,, cosh «,,&+ A4, cosh §,,¢
1

m=2

sz[(a —m?)C,, cosh a,,& +(BZ—m?)4,, cosh ﬁmé]}cos mé,

>0 -, 21)
T, = —-8(9) sin 0+ (cos 6+ 20sin 6)+2b2Cooc0cosh NG
i ib’p(é?—-2)] p
{%2[ Ay +od— I)Cltosha,é-é——--—-&;;——— — cos 8

25;2 Z [(@2 —m*)C,, cosh a,,& +(B%—m?)A,, cosh B,.£] cos mb,

nz0z-m (22)

It remains to evaluate 4,, Cy, 4,, C,, 4,, and C,, from the edge conditions at £ = +/R.
To achieve this, we expand the first two terms of the right-hand sides of (20) and (22) in
Fourier series and apply conditions (8) to get

ib’p bp ? 2ib*p & 1
— chosf}— Yo ; cos mf

m=2M" =

= Ay+Cycosh og(l/R)+ (A4, + C, cosh «,{l/R)jcos 8

+ Y [A,cosh B,(/R)+ C,, cosh «,(l/R)] cos m0, (23)
m=2
P [pU*/R*~ 2) P
5t [ 2an cos O+~ mzz cos mb

sz Coao cosh ao(l/R)+ bz{ Ay +(a}—1)C, cosh a,(I/R)] cos §

21;2 z [(B% —m?)A,, cosh B,{I/R) + (22 — m*)C,, cosh a,{I/R)] cos mf, (24)
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from which one finds

Com %P
® 7 nad cosh ag(l/RY
ib2p[ 1
AO = T 1+a—(2)),
2ib*p(1 — a?)
C) =g,
na; cosh o, (I/R)
22or 205 122 (25)
ib*play(2 +1°/R*)—12]
A1 = r a
ot
2ib?p(1 + B2 —m?)
Cn= 7 2__ g2 :
a(m* — 1)(a; — Ba) cosh o, (I/R)
~2ib?p(1 + a2 —m?)
Ap = 7 32 ‘
mim* — 1)(ay, — Br) cosh B (I/R)

Finally one must ensure the conditions of continuity and symmetry, at § = =, for the
stresses and displacements resulting from the particular integral . We denote these
quantities by w*, T, T;*, ..., etc. Since ¥ is an even function of f, the only conditions that
must be satisfied are

} 3
All odd functions such as N¥, v*,filv——

T L., ete] =0
q atfd == (26)
@(AH even functions such as w*, T¥, Tj*,.. . etc) = 0
Observing the structure of quantities like N§, ..., etc, and others such as T#,.. ., etc., it

is seen that the former and the latter are respectively formed from odd and even derivatives
of ¥. Since all odd derivatives of y are zero at 8 = =, the conditions (26) are therefore
satisfied. It should be noticed that * is at most a constant which must be set equal to zero
in order to meet conditions Tgf = My; = 0 at 6 = .

In practical cases, distributed loads are more common than line loads. However the
solution to the problem of a distributed load, being constant along the length of the shell
and varying in the circumferential direction can be found from (20),.since — 7/p is the
Green’s function for problems of this type. Therefore, for the solution T; of a distributed
load, one has

T, = ——Iijtﬁe T(2n+1—0], E)p(r) dr—ﬁJ‘n T[0—1], &)p(r)dr forn> 0 =0
PJon PJ-rn+o 27)

n

R 1r+8~ R -
T, = M—ﬁ—f T{(x—9], f)p(r)d%-—f; T({R2n—1+6},Ep(r)dr for0=2 0 > —n=n

n+ 8

where p(0) is the radially distributed load per unit area of the middle surface, and 7 is the
dummy variable of integration.
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4. CONVERGENCE

Let us analyze the behavior of 4,, and C,, and related terms for sufficiently large m.
Squaring o, and §,,, given by relations (19), one finds

a2 = m? +y—i(L+b?),

Br = m* =y +i(i—b?)
a2 —mil =7+ 1—iA+b?), (28)
Bi—mi+1 = —y+1+i(l—b?),

ai—pE = 2y—ik)

Furthermore, factoring out m in the expressions for y and 4, given by (19), we also obtain

1, b*\ 1 b*\? e
Sk [ RN

1 b4 1 b4 2 1Y 4 (29)
j == R I R N R N .
i m{ 2(1 m2)+2[ m2)+4b } }
It is clear from (29) that for large m, y and 4 tend to the following expressions
y ~ mk, }
2~ ma, {30)
in which

k = [344(1+4b**]} = constant,
q = [—4+3(1 +4b**] = constant.

Also from relations (28) we find for large m

i —m?+1 ~ y—id, aZ—m? ~ y—il,
@31

ﬁgx“’mz'f'l ~ —‘i"}'i;&s ﬁi_ml! ~ —}’_}-I‘;'

Substituting relations (31) and the last of (28) into the expressions for C,, and 4,,, given
by (25), and their products by (a2 —m?) and (B%—m?) one obtains

—ib%p L —ib?p(k—iq)
™ am? cosh a,(I/R) (om =m)C ~ nm cosh a,,(I/RY
Y —ib 5 —mira, ~ O PE=i) G2
™ nm? cosh B,(I/RY ” ™ mmcosh B,(/R)

It remains to examine the behavior of a,, and f,, for sufficiently large m. To do this let us
factor out (m?+7) and (m? —y) respectively in the expressions for «,, and f,,, given by (19),
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to get

s I e

{ Hm? +9)+3(m? +v)[
A—

212714 )4 (33)
oo T}
S it
m—y

Since, according to expressions (30), y and A behave as m the terms (A+b?)/(m?+7) and
(A= b?)/(m*—y) tend to zero when m becomes large, and hence one could use the binomial
expansion to get

HA+b2\2 1 1+b2\4 4 ]
{f(m o H)[H ( 2+7‘) —g(mzw) +]}
i d L2 1402 £ A4 b? 2“1 A+ b2\ 3
1{ Fm*+y)+32(m +v)[1+2‘m2+y) 3 + ...

~m——i?—,

2

—hii2 214 % ; (34)
B {~(m — )+ Hm? *y)[ ;(} b) hi(m _i) +}}

b22 l_b24 kS
e B

.q
m+12.

Substituting the above results into (32) we finally obtain

2bp ql ql
CmNW(SlﬁzR ICOS’*'R

20%p | . ql gl
A, ~ "'W<Sln 2R+IC052—R

(35)

2b%p ql ql ql ql
2 _ e 0P 4 qa ab
(as —m*H)C,, - m,/R[k sin 5R 408 5p il g sin 2R+kcos SR

2b%*p ql ql ql ql
2 4 o~ 2P £ 2
(B —m)A, - emUR[k sin 2R+q cos SR il g sin 2R Kk CO8 = 5R

Therefore it is seen that the series in T converges as fast as (m? ¢™/®)"1 at £ = 0. The
series involved inT, and T, and hence those in T;, T, M, and M, converge not slower than
(me™R)~1 at the middle of the shell. It is interesting to note that for shells with /R > 2 the
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magnitude of the terms in the series decreases rapidly even at the beginning of the series.
as will be seen in the numerical results.

5. AN APPROXIMATE CLOSED FORM SOLUTION FOR COMPARATIVELY
LONG SHELLS

A review of C,, C,, C,,, and A4,, shows that, for a fixed m, the absolute values of these
quantities decay exponentially as I/R becomes large. On the other hand, 4, grows with
(I/R)* while 4, remains constant. Therefore, for a finite ¢ the quantities involving C,.
C,.C,,and 4,, tend to zero as I/R becomes infinitely large, and one could write the expres-
sion (20) as

~ 2o i D7D . ib%p .,
T= —&(0)b*pisin 0+——(cos 0+20sin 0)+ Ay + | A, ——5—*|cos 0,
27 oaym
(36)
for I/R — oo, ¢ = a finite number, Tn>0>—n

Similar expressions for 7; and T, and the other quantities can also be written. Physically
this means that the edge effect, represented by the terms involving C,, C,, C,,. and A,,,
decays far away from the edges which, in this case, are located at infinity. For comparatively
long shells the expression (36) can be used as an approximate solution for the region in
which |&] <€ /R, since the terms in the series become negligible as compared to those given
by (36). The minimum value of the ratios //R for which formula (36) could be used as an
approximation is discussed in the conclusion.

6. NUMERICAL RESULTS

In the following, we give numerical results for the cases in which b = 55 corresponding
to R/t = 18-308, v = 0-3, and /R range from 1 to 15. The values of «; and §; for J ranging
from zero to five are listed in Table 1. The corresponding values of 4; and C; for various l/R
are given in Tables 2 through 4. The computed constants 4; and C; are then inserted into

TABLE 1. VALUES OF ROOTS OF CHARACTERISTIC EQUATIONS FOR A = 5-5

J % Bs

0 5:5(1—1i)

1 5-5916 — 5-4099i —

2 5-8818—5-1595i 0-3328 +0-2920i
3 6-3938 - 4-8156i 0-8468 +0-6378i
4 71079 - 4-4716i 1-:5615+0-9824i
5 79572 —4-1859i 24111 +1-2684i

(21) and (22) to obtain, with the use of (3), the dimensionless quantities T,/p, Ty/p, M /Rp,
and My/Rp at £ = 6 = 0. These are given in Table 5. The longitudinal and circumferential



TABLE 2. VALUES OF CONSTANTS A,/p, Co/p, A1/p AND C,/p FOR b = 5-5, v = 0:3 AND VARIOUS //R

I/R AofP Co/p AP Ci/p
1 —0-1592+9-6289i (09219 —09178i) x 1073 — 04766+ 0-0210i (—0-1612—-0174)) x 102
2 —0-1592+9-6289i (0-2337—5316) x 10”7 —09535+4+0-0368i (—01977-0-8621i)x 107*
3 —0-1592+9-6289i (—0-1526—0-1546i) x 10~ —1-7484+0-0631i (—02937 —0-1499i) x 1077
5 —0-1592+ 962891 (—0-2594+02537i) x 10~ 2 —42921+0-1471i (—0-1338+0-4386i) x 1072
8 —0-1592+9-6289i (0-2476+0-0044i)x 107 1° —10-4924 +0-3521i (0-1735—0-1626i) x 10~ '*°
15 —0-1592+9-6289i (0:3231+0-3454i) x 107 3¢ —36-0884 + 1-1983i (0-1995 —0-1316i) x 107 3¢
TABLE 3. VALUES OF CONSTANTS A,/p, A3/p, A4/p AND A;/p FOR b = 5-5, v = 0-3 AND VARIOUS //R
l/R A>fp As/p Aufp As/p
1 —0-9007—6-2014i —1-0260 — 1-5430i —0-4420—0-21801 —0:1206 —0-0126i
2 —2:3362 —5-2986i —0-8556—0-1736i —0-0860+0-0547i (~0-4224 +0-9946i) x 1072
3 —3-3772-3-3602i —0-3275+0-1626i (—0489 +21-34i)x 1073 (0-739+0-627)) x 107
S —2:4918—-0-1774i 0-0110+ 0-0660i (0876 —0-340i)x 1073 (-02-08))x 1073
8 — 06075+ 0-6482i 0-0046 — 0-0025i (—0009 +0001i)x 1073 (04501 + 3390i) x 10~ #
15 0-0830 +0-0243i (03562 +1-3601i) x 10> (— 01571 +0-9156i)x 10~ 1° (— 00976 —0-2449i) x 10~ '3
TABLE 4. VALUES OF CONSTANTS C,/p, C3/p, C4/p AND Cs/p FOR b = 5-5, v = '3 AND VARIOUS //R
/R C,/p Ci/p Ca/p Cs/p
1 (0-4337—1-6837i) x 10~ (—02904 —0-9164i) x 10~ * (—0:3078 —0-2571i) x 1073 (—0-1354—0:0310)) x 103
2 (—03712-0-3122) x 10~ 3 (—0-1574+0-0325i)) x 10~ 3 (—0-1443+0-2949i) x 10~ ° (0-1444 +0-4646i) x 1077
3 (—01233+0-0557i)x 1077 (00269 +0-2674i) x 10~ 8 (02626 +0-0572i)+ 10~ ° (0-1152—0-1254i)x 10~ '°
5 (00939 4-0-0477i) x 10~ 12 (00796 —0-7470i) x 10~ '+ (—0173740:0475) x 10~ 1> (00637 +0-1989i) x 10~ 7
8 (—0-2221 - 0-0545i) x 10 2° (0:3212+0:1418i) x 10722 (—0-8256 —0-5426i) x 10~ 2% (02807 +0-8512i) x 10728
15 (—0-0686 + 0-2945i) x 10~ 38 (—~0-117240:0541i) x 10~ 4! (—02152—0-1085i) x 107 *¢ (0-3750 —0-4376i) x 10~ 32

[19Ys [esrpurj£s Jenaimn payroddns Ajdurts e jo Surpuag

LLOT
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TABLE 5. NON-DIMENSIONAL VALUES OF RESULTANT FORCES AND MOMENTS FOR b = 5-5, v = 0-3 AND
VARIOUS //R
I/R T/p T/p M/Rp M,/Rp
1 —2-3056 —0-8687 —0:0370 —0-1021
2 —3-8278 —0-5668 — 00489 —0-1461
3 — 51991 —0-4129 —0-0598 —0-1837
5 — 67006 —0-2306 - 00745 —0-2366
8 —11-0658 —0-1887 - 00791 —0-2527
15 — 359472 —-02174 — 00846 —~0-2520

stresses 0 and o, at { = 0 = 0, z = t/2 are calculated from the following expressions

t T, 6R M,
0= —+— =2,
p p t Rp (37)
t Tg+6R M,
0= —+— ==
p° b t Rp

The resuits of the calculations are listed in Table 6.

TABLE 6. NON-DIMENSIONAL VALUES OF LONGITUDINAL AND CIRCUMFERENTIAL STRESSES AT
E=0,8=0,z=12F0R b = 55,v = 03 AND VARIOUS //R

I/R “/l_’)ag “/!—’)‘70
1 —6-3672 -~ 12-0873
2 —9-1964 —16:6130
3 —11-7647 —20-5925
S — 14-8891 —262174
8 —19-7509 — 279504

15 —45-2383 —27-9038

Except for the case [/R = 1, in which six terms in the series are taken, the rest of the
above quantities are computed by keeping only four terms in the series.

Finally the values of the stresses o and g4 at ¢ = 0 = 0, z = t/2, calculated from
relation (36), are given in Table 7 in order that one can compare them with those given in
Table 6, and establish the range of validity of (36). The results given in Tables 6 and 7 are

TABLE 7. NON-DIMENSIONAL VALUES OF LONGITUDINAL AND CIRCUMFERENTIAL STRESSES,

CALCULATED FROM FORMULA (36), AT = 0,0 =0, = t/2FOR b = 55, v = 0:3 AND VARIOUS
/R

/R (t/Plo; (t/P)oy
1 — 82930 — 264841
2 — 87888 —26:5025
3 -96152 — 265331
5 — 122595 — 266309
8 —18:7051 —26-8694

15 —45:3137 —27-8541
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plotted in Fig. 1. It is seen that the relative errors made by employing the expressions (36)
are 5%, and 0-29, respectively for I/R = 8 and I/R = 15.

40—
36—

32—

FiG. 1. Dimensionless longitudinal and circumferential stresses vs. //R. The dash lines represent the
stresses calculated from formula (36).

7. DISCUSSION

The minimum value of the ratios I/R for which formula (36) could be used as an approxi-
mate solution depends somewhat on the accuracy desired. For most engineering problems,
in which 59 error is allowed, one could use the expression (36) for [/R = 8. Obviously,
for better accuracy, one has to take a higher limit for //R. When //R < 8§ we must take a
few terms in the series. Again the number of these terms depends on the accuracy needed.
For example, the above numerical results show that for [/R = 5 the absolute values of
successive A,’s decrease at an average rate of about 1/70 for the first four terms in the
series. Therefore for engineering problems one could achieve the desired accuracy by
keeping the first two terms in the series, when [/R = 5.

Although the exact theoretical line loading of a cylindrical shell cannot be achieved
in practice, one could find cases in which the load is distributed along a very narrow strip.
As an example, consider a plate with a constant distributed load on the top, supported by
several hollowed simply supported cylinders. On the other hand cylindrical shells, carrying
a distributed load which is constant along the length of the shell, are of common occurrence
in engineering. Among these one could mention simply supported horizontal tanks, filled
completely or partially with fluid, horizontal pipes carrying fluid, and horizontal rotating
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cylindrical containers used in the chemical industry. Problems arising in these cases can be
solved with the aid of (27).
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AbcrpakT—Henonk3syercs  kommiekcnoe muddepenuuaipioe ypasHeHHe MHTHEApPHuecko obonouxd,
noydesnoe Hopoxuwiossim [1], nis OnpeaencHus HAOPKEHHOTO COCTOAHNS, CBOOOAHO ONEpTOi, 3aMK-
HYTOM, HHIHHAPHUYECKOH 000JIOMKH, MOABEPXKEHHON NONCTBHIO paBHOMEPHOH, BHyTpeHHEH paluasibHOA
JNeHeltHOM Hapry3ke BAoONb obpaszyiomelt. 3amaya onpenensieTrcs B 3aMKHYTOM BHIC YaCTHOFO MHTHIpaia
nubdepeHUNANBHOTO YPaBHEHHSA, KOTOPbIH BBIIOJIHAET KPAeBbIe YCIOBHA ¢ NOMOIUBIO NONOMHHTENBHBIX
petuesnii, 3 popMe OOMHADHBIX PAROB (ypse. DTH pajsbl CXOAATCH OYEHB OBICTPO B palORaX CepPERHHBI
obonouku. [na CPaBHHTEIBHO AIHHHBIX 000JI04EX BRIBOAATCH NPHOMHIKCHHBIC BHIDAXCHHE B 3AMKHYTOM
BHAE, AJis Pa#OHA OYEHb YAANEHHOrO OT xpaeB. JlaeTc MAarTeMaTHyeckas MONLITKA CXOOUMOCTH PAAOB H
NPEACTABAAIOTCH YHCHCHHDBIE Pe3yIbTaThl IS HEKOTOPLIX OTHOIUEHWH JIIHHBI X PaguycCy.



